首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8554篇
  免费   994篇
  国内免费   166篇
电工技术   418篇
综合类   465篇
化学工业   4363篇
金属工艺   284篇
机械仪表   135篇
建筑科学   503篇
矿业工程   170篇
能源动力   1124篇
轻工业   636篇
水利工程   6篇
石油天然气   173篇
武器工业   70篇
无线电   129篇
一般工业技术   724篇
冶金工业   332篇
原子能技术   17篇
自动化技术   165篇
  2024年   39篇
  2023年   119篇
  2022年   229篇
  2021年   361篇
  2020年   344篇
  2019年   285篇
  2018年   224篇
  2017年   330篇
  2016年   276篇
  2015年   291篇
  2014年   532篇
  2013年   524篇
  2012年   622篇
  2011年   696篇
  2010年   487篇
  2009年   490篇
  2008年   448篇
  2007年   590篇
  2006年   502篇
  2005年   418篇
  2004年   366篇
  2003年   305篇
  2002年   235篇
  2001年   214篇
  2000年   188篇
  1999年   140篇
  1998年   110篇
  1997年   78篇
  1996年   67篇
  1995年   37篇
  1994年   35篇
  1993年   37篇
  1992年   32篇
  1991年   9篇
  1990年   9篇
  1989年   14篇
  1988年   8篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1951年   5篇
排序方式: 共有9714条查询结果,搜索用时 15 毫秒
1.
Flame spread over solid fuels in high‐pressure situations, such as nuclear containment shells during a pressurized period, has potential to result in catastrophic disaster, thus requiring further knowledge. This paper experimentally reveals the flame spread behaviors over fuel cylinders in high pressures. Polyethylene and polymethyl‐methacrylate cylinders with the diameter of 4.0 mm are used in this study. Ambient gas is air, and total pressures are varied from naturally normal pressure (100 kPa) to elevated pressure (500 kPa). Flame characteristics including flame appearance and flame size and burning rate and flame spread rate are investigated. Results show that in high pressure, the flame appearance is significantly affected. As the pressure increases, the blue flame disappeared, and the color of flame tip changes from luminous yellow to orange as well the orange part extends down towards the base of flame. The dimensionless flame height increases with pressure for pressure below 150 kPa and then decreases with pressure above that level. The burning rates show increasing trend with pressure and are proportional to P0.6 and P0.79 for polymethyl‐methacrylate and polyethylene, respectively. Besides, flame spread rates for polymethyl‐methacrylate and polyethylene both were found to be proportional to P0.5.  相似文献   
2.
Co-firing NH3 with H2/CO/syngas (SYN) is a promising method to overcome the low reactivity of NH3/air flame. Hence, this study aims to systematically investigate the laminar premixed combustion characteristics of NH3/air flame with various H2/CO/SYN addition loadings (0–40%) using chemical kinetics simulation. The numerical results were obtained based on the Han mechanism which can provide accurate predictions of laminar burning velocities. Results showed that H2 has the greatest effects on increasing laminar burning velocities and net heat release rates of NH3/air flame, followed by SYN and CO. CO has the most significant effects on improving NH3/air adiabatic flame temperatures. The H2/CO/SYN additions can accelerate NH3 decomposition rates and promote the generation of H and NH2 radicals. Furthermore, there is an evident positive linear correlation between the laminar burning velocities and the peak mole fraction of H + NH2 radicals. The reaction NH2 + NH <=> N2H2 + H and NH2 + NO <=> NNH + OH have remarkable positive effects on NH3 combustion. The mole fraction of OH × NH2 radicals positively affects the net heat release rates. Finally, it was discovered that H radicals play an important role in the generation of NO. The H2/CO/SYN additions can reduce the hydrodynamic and diffusional-thermal instabilities of NH3/air flame. The NH3 reaction pathways for NH3–H2/CO/SYN-air flames can be categorized mainly into NH3–NH2–NH–N–N2, NH3–NH2–HNO–NO(?N2O)–N2 and NH3–NH2(?N2H2)–NNH–N2. CO has the greatest influence on the proportions of three NH3 reaction routes.  相似文献   
3.
A novel and highly effective flame retardant (FR), DOPO‐TPMP oligomer, was synthesized by a simple condensation of 4‐(hydroxymethyl)‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane‐1‐oxide and phosphorus oxychloride followed by a polycondensation reaction with 6‐(2,5‐dihydroxyphenyl)‐6H‐dibenzo[c,e][1,2]oxaphosphinine‐6‐oxide. The chemical structure of DOPO‐TPMP was well characterized using Fourier transform infrared and NMR spectra. DOPO‐TPMP was used as an additive‐type FR for epoxy resin (EP). The FR properties of the resultant EP composites were investigated by limiting oxygen index (LOI) test, UL‐94 vertical burning test and cone calorimeter measurements. Specifically, the EP composite containing 10.0% DOPO‐TPMP achieved a LOI value of 36.1%, V‐0 rating in the UL‐94 test and a 58% reduction in peak heat release rate. Further mechanism analysis attributed the enhanced flame retardancy to the increased char yield on the addition of DOPO‐TPMP. © 2019 Society of Chemical Industry  相似文献   
4.
Experimental methods and theoretical analysis are employed to investigate effects of channel opening area on downward flame spread characteristics of extruded polystyrene (XPS) thermal insulation materials on building facade. The average flame height first drops and then rises as dimensionless opening area (the ratio of sidewall opening area to sidewall area, ie, S*) increases. As S* rises, both the average and maximum temperature of the curtain wall decrease, and the decreasing of the average temperature is linear. XPS surface temperature history can be divided into four stages, ie, inapparent rising stage (preheating), significant rising stage (melting), dropping stage (pyrolysis), and rerising stage (ignition). The preheating length first rises and then drops as S* increases. The XPS flame spreads steadily at the early period while acceleration occurs at the later period. For different opening areas, the difference in spread distance history is not apparent in the early stage while this difference is significant in the later stage. The flame spread rate (Vf) first increases and then decreases as S* rises. A downward flame spread model for XPS in vertical channel with openings is built. The varied trend of Vf predicted using this model corresponds to the experimental result.  相似文献   
5.
In this research both low temperature high velocity oxygen-fuel flame (LT-HVOF) and high velocity oxygen-fuel flame (HVOF) techniques were employed to prepare WC-10Co4Cr splats and coatings. In situ cutting of WC-10Co-4Cr splats was carried out with focused ion beam (FIB), and a model was proposed to describe how the wear resistance of WC-10Co4Cr coatings was correlated with its residual stress state and the splats deposition state. It was observed that in LT-HVOF spraying process, WC-10Co4Cr splats were slightly melted showing "hill" shape, while in HVOF spraying process, the splats were half melted having the appearance of "concavity". The residual stress of WC-10Co4Cr coatings is determined by the size, melting state, flight speed and temperature gradient of splats. In this paper, the quantitative function formula involving heating temperature and the flight speed of the powder is put forward for the first time to predict the wear resistance of the WC-10Co4Cr coatings. This will provide a theoretical basis for engineering practice and an effective way to save costs.  相似文献   
6.
采用改进的PREMIX模型及"化学爆炸模式分析(CEMA)"方法,对二甲醚(DME)球形扩散火焰的熄火机理进行数值诊断,分析环境氧气摩尔分数(X_(O_2))及详细基元反应对熄火极限的影响,利用"爆炸因子"和"分岔因子"的概念,确定控制DME球形扩散火焰熄火的关键反应动力学因素。结果表明:DME冷焰具有比热焰更宽的可燃范围;冷焰对X_(O_2)的敏感性弱很多,热焰中具有正特征值的CEM首次出现在最高温度处;在熄火极限附近,CEM的特征值变为虚数,说明熄火伴随着振荡;热焰的熄火主要由小分子所参与的高温反应所控制,而冷焰熄火主要由大分子所参与的低温反应所控制。  相似文献   
7.
Upholstered furniture is often manufactured with polyurethane foam (PUF) containing flame retardants (FRs) to prevent the risk of a fire and/or to meet flammability regulations, however, exposure to certain FRs and other chemicals have been linked to adverse health effects. This study developed a new methodology for evaluating volatile organic compound (VOC) and FR exposures to users of upholstered furniture by simulating use of a chair in a controlled exposure chamber and assessing the health significance of measured chemical exposure. Chairs with different fire-resistant technologies were evaluated for VOC and FR exposures via inhalation, ingestion, and dermal contact exposure routes. Data show that VOC exposure levels are lower than threshold levels defined by the US and global indoor air criteria. Brominated FRs were not detected from the studied chairs. The organophosphate FRs added to PUF were released into the surrounding air (0.4 ng/m3) and as dust (16 ng/m2). Exposure modeling showed that adults are exposed to FRs released from upholstered furniture mostly by dermal contact and children are exposed via dermal and ingestion exposure. Children are most susceptible to FR exposure/dose (2 times higher average daily dose than adults) due to their frequent hand to mouth contact.  相似文献   
8.
Previous studies showed that adding hydrogen (H2) can have an opposite chemical effect on soot formation: its chemical effect enhances and suppresses soot formation in methane (CH4) and ethylene (C2H4) diffusion flames, respectively. Such opposite chemical effect of H2 (CE-H2) remains unresolved. The different CE-H2 is studied numerically in the two laminar coflow diffusion flames. A detailed chemical mechanism with the addition of a chemically inert virtual species FH2 is used to model the gas-phase combustion chemistry in this study. Particularly, a reaction pathway analysis was performed based on the numerical results to gain insights into how H2 addition to fuel affects the pathways leading to the formation of benzene (A1) in CH4 and C2H4 flames. The numerical results show that the CE-H2 in CH4 diffusion flame to prompt soot formation is ascribed that the higher mole fraction of H atom promotes the formation of A1 and Acetylene (C2H2) and leads to higher nucleation rate and eventually higher soot surface growth rate. In contrast, adding H2 to C2H4 diffusion flames decreases soot nucleation and surface growth rate. The lower soot nucleation rate is due to the lower mole fractions of pyrene (A4), while the lower soot surface growth rate is due to the lower mole fractions of H atom and C2H2, higher mole fraction of H2 and lower soot nucleation rate. Furthermore, the CE-H2 in C2H4 diffusion flames promotes the formation of A1, but suppresses the formation of A4.  相似文献   
9.
In the present article, series of experiments were conducted to study the structure characteristics of premixed flames in turbulent rich hydrogen‐air mixtures within a constant‐volume turbulent combustion system, 7 equivalence ratios (1.2, 1.4, 1.6, 1.8, 2.0, 2.2, and 2.5), and 5 turbulent intensity (0, 0.494, 0.742, 1.080, and 1.309 m/s) were studied. With the increase of turbulent intensity, the cellularity degree was obviously enhanced for turbulence promoted the formation and the development of initial cracks by wrinkling flame‐front; furthermore, the enhanced hydrodynamic instability was also one important reason. Turbulence would change the linear growth of critical radius to equivalence ratio into nonlinear, but the variation extents had limitation. The wrinkling index of flame‐front would rise as flame expanded, and the wrinkling index on flames with similar size would be increased with the increase of turbulence once the turbulent intensity was sufficiently high. From the variations of the root mean square of related oscillation on flame‐front, it could be found that the partial amount of oscillation induced by sole turbulence was declined as flame expanded for the breakup of large eddies.  相似文献   
10.
唐志勇  熊伟文  田华峰 《塑料》2020,49(1):72-76,80
以均苯四甲酸二酐(PMDA)、多苯基多亚甲基多异氰酸酯(PAPI)、聚醚多元醇为主要原料,分别采用聚酰亚胺(PI)预聚法、聚氨酯(PU)预聚法和一步法制备聚氨酯酰亚胺泡沫,从微观形貌、力学性能、热稳定性能以及阻燃性能方面对上述3种制备工艺进行对比和评估。实验结果表明,采用一步法制备PUI泡沫时,PU链段和PI链段同时增长,容易造成泡孔缺陷,导致泡沫的力学性能较差;在采用PU预聚法制备的PUI泡沫中,PU链段含量较高,因此,泡孔孔径分布较宽且平均泡孔直径较大,对应的热稳定性和阻燃性能较差;采用PI预聚法制备的PUI泡沫的泡孔孔径分布窄且平均泡孔直径较小,对应的压缩性能、热稳定性以及阻燃性能均达到最佳。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号